Complex Analysis: Final Exam

Aletta Jacobshal 02, Wednesday 1 February 2017, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10 .
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (15 points)

Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{1}{(x-1)\left(x^{2}+1\right)} d x
$$

using the calculus of residues.

Question 2 (15 points)

Show that if f is analytic in the closed disk $|z| \leq 2$ and if $|f(z)|<1$ on the circle $|z|=1$, then the equation $f(z)=z^{n}$ has exactly n solutions (counting multiplicity) in the open disk $|z|<1$. Hint: Rouche's theorem; the conditions for applying the theorem must be explicitly stated and verified.

Question 3 (15 points)

Represent the function

$$
f(z)=\frac{z+1}{z-1}
$$

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;
(b) (7 points) as a Laurent series in the domain $|z|>1$.

Question 4 (15 points)

At which points is the function

$$
f(z)=x^{2}+y^{2}+2 i x y,
$$

differentiable? Compute the derivative of $f(z)$ at these points.

Question 5 (15 points)

Consider the function

$$
f(z)=\frac{\sin z}{z^{2}}
$$

(a) (6 points) Determine the singularities of $f(z)$ and their type (removable, pole, essential; if pole, specify the order).
(b) (9 points) Show that $f(z)$ does not have an antiderivative in $\mathbb{C} \backslash\{0\}$. Hint: Compute the integral of f along the unit circle.

Question 6 (15 points)

(a) (8 points) Prove that

$$
\cos z=\cos x \cosh y-i \sin x \sinh y
$$

where $z=x+i y$.
(b) (7 points) Prove that the function

$$
u(x, y)=\cos x \cosh y
$$

is harmonic in \mathbb{R}^{2} and find a harmonic conjugate of $u(x, y)$.

